Three Valleys Municipal Water District 2024 WATER QUALITY REPORT TO TVMWD MEMBER AGENCIES

MIRAMAR GROUNDWATER

REGULATORY STANDARDS

WEYMOUTH refers to the Metropolitan Water District's Weymouth Water Treatment Plant in the city of La Verne.

MIRAMAR refers to the Three Valleys Municipal Water District's Miramar Water Treatment Plant in the city of Claremont.

WEYMOUTH

MIRAMAR

		WETWOOTH	IVIIRAIVIAR		MIRAMAR GI	ROUNDWATER		REGUL	AIURT SIA	NDAKD5	
		EFFLUENT	EFFLUENT	WELL #1	WELL #2	GRAND WELL	MIRAGRAND WELL	State MCL	PHG	State	Major Sources in Drinking Water
		Range/Average	Range/Average							DLR/CCRDL, (RL)	
SOURCE WATER										(IXL)	
% of State Project Water		0-100 range	0-95.66								
% of Groundwater		0	4.34								
PRIMARY STANDARDS - Mandatory Hea	alth-Related St	tandards									
<u>CLARITY</u>											
Combined Filter Effluent (CFE) Turbidity (a)	NTU	0.06						TT	NA	NA	Soil runoff
MICROBIOLOGICAL (b)	% ≤ 0.3	100%	100%	100%	100%	100%	100%				
Total Coliform Bacteria (c)	% Positive	0-0.3%/0.1	0%	0%	0%	0%	0%	TT	MCLG = 0	NA	Naturally present in the environment
Total Comorni Bacteria (C)	70 1 OSITIVE	distribution system-wide	distribution system-wide	070	070	070	070		WOLG - 0	"	Naturally present in the crivinoninent
Escherichia coli (E. coli) (c)	Number	0% distribution system-wide	0% distribution system-wide	0%	0%	0%	0%	TT	MCLG = 0	NA	Human and animal fecal waste
Heterotrophic Plate Count (d)	CFU/ mL	ND	ND	ND	ND	ND	ND	TT	NA	NA	Naturally present in the environment
Cryptosporidium	Oocyst 200 L	ND	ND	ND	ND	ND	ND	TT	MCLG = 0	NA	Human and animal fecal waste
Giardia	Cysts 200 L	ND	ND	ND	ND	ND	ND	TT	MCLG = 0	NA	Human and animal fecal waste
ORGANIC CHEMICALS		1			1	1		I			
Synthetic Organic Compounds (e)	<u>Units</u>	· · · · · ·	1					_			, , , , , , , , , , , , , , , , , , , ,
1,2,3-Trichloropropange (1,2,3-TCP)	ppt	ND	ND	ND	ND	ND	ND	5	0.7	5	Discharge from industrial and agrichemical factories; byproducts of producing other compounds and pesticides, leaching from hazardous waste site
2,4,5-TP (Silvex)	ppb	ND	ND	ND	ND	ND	ND	50	3	1	Residue of banned herbicide
2,4-D	ppb	ND	ND	ND	ND	ND	ND	70	20	10	Runoff from herbicide used on row crops, range land, lawns and aquatic weeds
Acrylamide (f)	ppm	ND	ND	ND	ND	ND	ND	TT	MCLG = 0	NA	Water treatment chemical impurities
Alachlor	ppb	ND	ND	ND	ND	ND	ND	2	4	1	Runoff from herbicide used on row crops
Atrazine	ppb	ND	ND	ND	ND	ND	ND	1	0.15	0.5	Runoff from herbicide used on row crops and along railroad and highways rights- of-way
Bentazon	ppb	ND	ND	ND	ND	ND	ND	18	200	2	Runoff/leaching from herbicide used on beans, peppers, corn, peanuts, rice, and ornamental grasses
Benzo(a)pyrene	ppt	ND	ND	ND	ND	ND	ND	200	7	100	Leaching from linings of water storage tanks and distribution mains
Carbofuran	ppb	ND	ND	ND	ND	ND	ND	18	0.7	5	Leaching of soil fumigant used on rice, alfalfa and grapes vineyards
Chlordane	ppt	ND	ND	ND	ND	ND	ND	100	30	100	Residue of banned insecticide
Dalapon	ppb	ND	ND	ND	ND	ND	ND	200	790	10	Runoff from herbicide used on rights of way, crops and landscape maintenance
Di(2-ethylhexyl) adipate	ppb	ND	ND	ND	ND	ND	ND	400	200	5	Discharge from chemical factories
Di(2-ethylhexyl) phthalate	ppb	ND	ND	ND	ND	ND	ND	4	12	3	Discharge from rubber and chemical factories; inert ingredient in pesticides
Dibromochloropropane (DBCP)	ppt	ND	ND	ND	ND	ND	ND	200	3	10	Banned nematicide that may still be present in soils due to runoff/leaching
Dinoseb	ppb	ND	ND	ND	ND	ND	ND	7	14	2	Runoff from herbicide used on soybeans, vegetables and fruits
Dioxin (2,3,7,8-TCDD)	ppq	ND	ND	ND	ND	ND	ND	30	0.05	5	Waste incineration emissions, chemical factory discharge

	l I	 	,	ı	ı .	1	1	I	1 1		1
Diquat	ppb	ND	ND	ND	ND	ND	ND	20	6	4	Runoff from herbicide used for terrestrial and aquatic weeds
Endothall	ppb	ND	ND	ND	ND	ND	ND	100	94	45	Runoff from herbicide used for terrestrial and aquatic weeds
Endrin	ppb	ND	ND	ND	ND	ND	ND	2	0.3	0.1	Residue of banned insecticide and rodenticide
Epichlorohydrin	ppm	ND	ND	ND	ND	ND	ND	TT	MCLG = 0	NA	Water treatment chemical impurities
Ethylene dibromide (EDB)	ppt	ND	ND	ND	ND	ND	ND	50	10	20	Discharge from petroleum refineries; underground gas tank leaks, banned nematicide that maybe still present in soils due to runoff and leaching
Glyphosate	ppb	ND	ND	ND	ND	ND	ND	700	900	25	Runoff from herbicide use
Heptachlor	ppt	ND	ND	ND	ND	ND	ND	10	8	10	Residue of banned insecticide
Heptachlor Epoxide	ppt	ND	ND	ND	ND	ND	ND	10	6	10	Breakdown product of heptachlor
Hexachlorobenzene	ppb	ND	ND	ND	ND	ND	ND	1	0.03	0.5	Discharge from metal refineries & agrichemical factories; wastewater chlorination reaction by-product
Hexachlorocyclopentadiene	ppb	ND	ND	ND	ND	ND	ND	50	2	1	Discharge from chemical factories
Lindane	ppt	ND	ND	ND	ND	ND	ND	200	32	200	Runoff/leaching from insecticide used on cattle, lumber, gardens
Methoxychlor	ppb	ND	ND	ND	ND	ND	ND	30	0.09	10	Runoff/leaching from insecticide uses
Molinate (Ordram)	ppb	ND	ND	ND	ND	ND	ND	20	1	2	Runoff/leaching from herbicide used on rice
Oxamyl (Vydate)	ppb	ND	ND	ND	ND	ND	ND	50	26	20	Runoff/leaching from insecticide uses
Pentachlorophenol (PCP)	ppb	ND	ND	ND	ND	ND	ND	1	0.3	0.2	Discharge from wood preserving factories, other insecticidal and herbicidal uses
Picloram	ppb	ND	ND	ND	ND	ND	ND	500	166	1	Herbicide runoff
Polychlorinated Biphenyls (PCBs)	ppt	ND	ND	ND	ND	ND	ND	500	90	500	Runoff from landfills; discharge of waste chemicals
Simazine	ppb	ND	ND	ND	ND	ND	ND	4	4	1	Herbicide runoff
Thiobencarb	ppb	ND	ND	ND	ND	ND	ND	70	42	1	Runoff/leaching from herbicide used on rice
Toxaphene	ppb	ND	ND	ND	ND	ND	ND	3	0.03	1	Runoff/leaching from insecticide used on cotton and cattle
Volatile Organic Chemicals		ND	440	445	445				1000		
1,1,1-Trichloroethane	ppb	ND	ND	ND	ND	ND	ND	200	1000	0.5	Discharge from metal degreasing sites; manufacture of food wrappings
1,1,2,2-Tetrachloroethane	ppb	ND	ND	ND	ND	ND	ND	1	0.1	0.5	Discharge from industrial, agricultural chemical factories; solvent used in production of TCE, pesticides, varnish and lacquers
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ppm	ND	ND	ND	ND	ND	ND	1.2	4	0.01	Discharge from metal degreasing sites and other factories; dry-cleaning solvent; refrigerant
1,1,2-Trichloroethane	ppb	ND	ND	ND	ND	ND	ND	5	0.3	0.5	Discharge from industrial chemical factories
1,1-Dichloroethane	ppb	ND	ND	ND	ND	ND	ND	5	3	0.5	Extraction & degreasing solvent; fumigant
1,1-Dichloroethylene	ppb	ND	ND	ND	ND	ND	ND	6	10	0.5	Discharge from industrial chemical factories
1,2,4-Trichlorobenzene	ppb	ND	ND	ND	ND	ND	ND	5	5	0.5	Discharge from textile-finishing factories
1,2-Dichlorobenzene	ppb	ND	ND	ND	ND	ND	ND	600	600	0.5	Discharge from industrial chemical factories
1,2-Dichloroethane	ppt	ND	ND	ND	ND	ND	ND	500	400	500	Discharge from industrial chemical factories
1,2-Dichloropropane	ppb	ND	ND	ND	ND	ND	ND	5	0.5	0.5	Discharge from industrial chemical factories; primary component of some fumigants
1,3-Dichloropropene	ppb	ND	ND	ND	ND	ND	ND	500	200	500	Runoff/leaching from nematicide used on croplands
1,4-Dichlorobenzene	ppb	ND	ND	ND	ND	ND	ND	5	6	0.5	Discharge from industrial chemical factories

Benzene	ppb	ND	
Carbon Tetrachloride	ppt	ND	
cis-1,2-Dichloroethylene	ppb	ND	
Dichloromethane (methylene chloride)	ppb	ND	
Ethylbenzene	ppb	ND	
Methyl-tert-butyl-ether (MTBE)	ppb	ND	
Monochlorobenzene	ppb	ND	
Styrene	ppb	ND	
Tetrachloroethylene (PCE)	ppb	ND	
Toluene	ppb	ND	
trans-1,2-Dichloroethylene	ppb	ND	
Trichloroethylene (TCE)	ppb	ND	
Trichlorofluoromethane (Freon 11)	ppb	ND	
Vinyl chloride	ppt	ND	
Xylenes	ppm	ND	

The horoethylene (TCE)
Trichlorofluoromethane (Freon 11)
Vinyl chloride
Xylenes
INORGANIC CHEMICALS Aluminum
Antimony
Arsenic
Asbestos (h)
Barium
Beryllium
Cadmium
Chromium
Chromium VI
Copper (i)
Cyanide
Fluoride (j)
Lead (i)
Mercury
Nickel
Nitrate (as Nitrogen)
Nitrite (as Nitrogen)

ppb	ND	ND	ND	ND	ND	ND	1	0.15	0.5	Plastic factory discharge; gas tanks and landfill leaching
ppt	ND	ND	ND	ND	ND	ND	500	100	500	Discharge from chemical plants and other industrial activities
ppb	ND	ND	ND	ND	ND	ND	6	13	0.5	Industrial chemical factory discharge; biodegradation byproduct of TCE/PCE groundwater contamination
ppb	ND	ND	ND	ND	ND	ND	5	4	0.5	Discharge from pharmaceutical and chemical factories
ppb	ND	ND	ND	ND	ND	ND	300	300	0.5	Discharge from petroleum refineries; industrial chemical factories
ppb	ND	ND	ND	ND	ND	ND	13	13	3	Gasoline discharge from watercraft engines
ppb	ND	ND	ND	ND	ND	ND	70	70	0.5	Discharge from industrial, agricultural chemical factories and dry-cleaning facilities
ppb	ND	ND	ND	ND	ND	ND	100	0.5	0.5	Rubber and plastics factories discharge, landfill leaching
ppb	ND	ND	ND	ND	ND	ND	5	0.06	0.5	Discharge from factories, dry cleaners and auto shops
ppb	ND	ND	ND	ND	ND	ND	150	150	0.5	Discharge from petroleum and chemical refineries
ppb	ND	ND	ND	ND	ND	ND	10	50	0.5	Industrial chemical factory discharge; biodegradation byproduct of TCE/PCE groundwater contamination
ppb	ND	ND	ND	ND	ND	ND	5	1.7	0.5	Discharge from metal degreasing sites and other factories
ppb	ND	ND	ND	ND	ND	ND	150	1300	5	Discharge from industrial factories; degreasing solvent; propellant
ppt	ND	ND	ND	ND	ND	ND	500	50	500	Leaching from PVC piping; plastics factory discharge; biodegradation byproduct of TCE/PCE biodegradation
ppm	ND	ND	ND	ND	ND	ND	1.75	1.8	0.0005	Discharge from petroleum and chemical refineries; fuel solvent
ppb	ND - 150/93	ND	NR due 2028	NR due 2028	NR due 2028	NR due 2028	1000	600	50	Residue from water treatment process; erosion of natural deposits
ppb	ND	ND	NR due 2028	NR due 2028	NR due 2028	NR due 2028	6	1	6	Petroleum refinery discharges, fire retardants, solder, electronics

ND 450/02	N/D	ND	N/D	ND	ND	4000	600	EΛ	
ND - 150/93	ND					1000	600	50	Residue from water treatment process; erosion of natural deposits
ND	ND					6	1	6	
NB	ND	due 2028	due 2028	due 2028	due 2028	·		Ū	Petroleum refinery discharges, fire retardants, solder, electronics
ND	ND	NR	NR	NR	NR	10	0.004	2	Erosion of natural deposits; glass & electronics production wastes
		due 2028	due 2028	due 2028	due 2028				Erosion of natural deposits; glass & electronics production wastes
ND	ND	ND	ND	ND	ND	7	7	0.2	Internal corrosion of asbestos cement pipes; erosion of natural deposits
124	ND					1000	2000	100	Discharge of oil drilling wastes and from metal refineries; erosion of natural
									deposits
ND	ND					4	1	1	Discharge from metal refineries; aerospace and defense industries
ND	A/D					-	0.04		Internal corrosion of galvanized pipes; discharge from electroplating industrial
ND	ND					5	0.04	1	factories and metal refineries, runoff from waste batteries and paints, natural
ND	MD						MCI C = 400	40	lactories and metal refineries, furion from waste batteries and paints, flatdrai
טא	ND	due 2028	due 2028	due 2028	due 2028	50	WICEG = 100	10	Discharge from steel and pulp mills; erosion of natural deposits
ND	ND	0.58	0.4	0.4	0.63	10	0.02	0.1	Runoff/leaching from natural deposits: discharge from industrial wastes
112	2	0.00	0.4	0.14	0.00		0.02	0.1	Transitional file in the real appoints. Also harge from interest at wastes
ND	ND	NR	NR	NR	NR	AL=1.3	0.3	0.05	Internal corrosion of household pipes; erosion of natural deposits
		due 2028	due 2028	due 2028	due 2028				internal corrosion of household pipes; erosion of natural deposits
ND	ND	NR	NR	NR	NR	150	150	100	Discharge from steel/metal, plastic and fertilizer factories
		due 2028	due 2028	due 2028	due 2028				Discharge from steel/metal, plastic and fertilizer factories
0.3 - 0.8/0.7	0.11	NR	NR	NR	NR	2	1	0.1	Erosion of natural deposits; water additive that promotes strong teeth
	(naturally occurring)		(naturally	occurring)					Elosion of hataral deposits, water additive that promotes strong teem
ND	ND	NR	NR	NR	NR	AL=15	0.2	5	Internal corrosion of household pipes; erosion of natural deposits
									internal contoller of fledeshold pipes, stoller of flattaral deposits
ND	ND					2	1.2	1	Erosion of natural deposits; discharge from factories; runoff from landfills
									and the second of the second o
ND	ND		NR			100	12	10	Erosion of natural deposits; discharge from metal factories
		due 2028	due 2028	due 2028	due 2028				
ND	ND - 0.49/0.23	ND-2.7/1.53	ND-1.2/0.667	ND-1.9/1.45	ND-4.2/2.57	10	10	0.4	Runoff & leaching from fertilizer use; septic tank and sewage; erosion of natural deposits
ND	ND	ND	ND	ND	ND	1	1	0.4	Runoff & leaching from fertilizer use; septic tank and sewage; erosion of natural
ND	ND	ND	ND	ND	ND	'	'	v. -	deposits
	ND 124 ND	ND ND ND ND ND ND 124 ND ND ND	ND	ND	ND ND NR NR NR	ND	ND	ND ND NR NR NR NR NR NR	ND ND NR NR NR NR NR NR

Perchlorate	ppb	ND	ND	NR due 2028	NR due 2028	ND due 2028	NR due 2028	6	1	1	Industrial waste discharge
Selenium	ppb	ND	ND	NR due 2028	NR due 2028	NR due 2028	NR due 2028	50	30	5	Refineries, mines and chemical waste discharge; runoff from livestock lots
Thallium	ppb	ND	ND	NR due 2028	NR due 2028	NR due 2028	NR due 2028	2	0.1	1	Leaching from ore-processing sites; factory discharge
RADIOLOGICALS_		•	<u> </u>								
Gross Alpha Particle Activity	pCi/L	ND	ND	NR due 2028	NR due 2028	ND due 2028	ND due 2028	15	MCLG=0	3	Erosion of natural deposits
Gross Beta Particle Activity	pCi/L	ND - 5/ND	2.29	NR	NR	NR	NR	50	MCLG=0	4	Decay of natural and man-made deposits
Combined Radium Radium 226 + 228	pCi/L	ND	ND	NR due 2028	NR due 2028	NR due 2028	NR due 2028	5	MCLG=0	NA	Erosion of natural deposits
Radium 226	pCi/L	ND	ND	NR due 2028	NR due 2028	NR due 2028	0.82 due 2028	NA	0.05	1	Erosion of natural deposits
Radium 228	pCi/L	ND	ND	NR due 2028	NR due 2028	NR due 2028	0.34 due 2028	NA	0.019	1	Erosion of natural deposits
Strontium-90	pCi/L	ND	ND	NR	NR	NR	NR	8	0.35	2	Decay of natural and man-made deposits
Tritium	pCi/L	ND	ND	NR	NR	NR	NR	20,000	400	1,000	Decay of natural and man-made deposits
Uranium	pCi/L	ND - 3/ND	ND	NR due 2028	NR due 2028	1.6 due 2028	3.4 due 2028	20	0.43	1	Erosion of natural deposits
DISINFECTION BY-PRODUCTS, DISINFECTAN	IT RESIDUALS	, AND DISINFECTION BY-F	PRODUCTS PRECURSOR	S (k)	•		•	•			
Total Tills Issued (TTUA)		1									
Total Trihalomethanes (TTHM)	ppb	12 - 48/45 Distribution system-wide	39.1 - 48.5/42.38 Distribution system-wide	NR	NR	NR	NR	80	NA	1	By-product of drinking water disinfection
Sum of Five Haloacetic Acids (HAA5)	ppb	ND - 23/19 Distribution system-wide	11 - 17.5/13.53 Distribution system-wide	NR	NR	NR	NR	60	NA	1	By-product of drinking water disinfection
Chloramines (as total chlorine residual)	ppm	19 highest RAA Distribution system-wide	NR	NR	NR	NR	NR	MRDL = 4.0	MRDL = 4.0	N/A	Drinking water disinfectant added for treatment
Bromate (I)	ppb	2 highest RAA	NR	NR	NR	NR	NR	10	0.1	1.0	Byproduct of drinking water ozonation
Total Organic Carbon (TOC)	ppm	2.4 highest RAA	1.18 highest RAA	NR	NR	NR	NR	TT	NA	0.30	Various natural and man-made sources; TOC as a medium for the formation of disinfection byproducts
SECONDARY STANDARDS - Aesthetic Sta	andarde										
Aluminum (g)	ppb	ND - 150/93	ND	NR due 2028	NR due 2028	1.6 due 2028	3.4	200	600	50	Residue from water treatment processes; natural deposits erosion
Chloride	ppm	96 - 116/106	56	NR due 2028	NR due 2028	1.6 due 2028	due 2028 3.4 due 2028	500	NA	(2)	Runoff/leaching from natural deposits; seawater influence
Color	color units	1	ND	NR due 2028	NR due 2028	1.6 due 2028	3.4 due 2028	15	NA	(1)	Naturally occurring organic materials
Copper (i)	ppm	ND	ND	NR due 2028	NR due 2028	1.6 due 2028	3.4 due 2028	1	0.3	0.05	Internal corrosion of household pipes; natural deposits erosion; wood preservatives leaching
Foaming Agents-Methylene Blue Active Substan	ppb	ND	ND	NR due 2028	NR due 2028	1.6 due 2028	3.4 due 2028	500	NA	(50)	Municipal and industrial waste discharges
Iron	ppb	ND	ND	NR due 2028	NR due 2028	1.6 due 2028	3.4 due 2028	300	NA	100	Leaching from natural deposits; industrial wastes
Manganese	ppb	ND	ND	NR due 2028	NR due 2028	1.6 due 2028	3.4 due 2028	50	NL=500	(5)	Leaching from natural deposits
MTBE	ppb	ND	ND	NR due 2028	NR due 2028	1.6 due 2028	3.4 due 2028	5	13	3	Gasoline discharges from watercraft engines
Odor Threshold	TON	ND	1	NR due 2028	NR due 2028	1.6 due 2028	3.4 due 2028	3	NA	1	Naturally occurring organic materials
Silver	ppb	ND	ND	NR due 2028	NR due 2028	1.6 due 2028	3.4 due 2028	100	NA	10	Industrial discharges
Specific Conductance	μS/cm	912 - 1080/996	420	NR due 2028	NR due 2028	1.6 due 2028	3.4 due 2028	1,600	NA	NA	Substances that form ions when in water; seawater influence
Sulfate	ppm	200 - 250/225	31	NR due 2028	NR due 2028	1.6 due 2028	3.4 due 2028	500	NA	0.5	Runoff/leaching from natural deposits; industrial wastes
Thiobencarb	nnh	ND	ND	NR	NR	16	3.4	-1	42	1	Runoff/leaching from rice herbicide

NR due 2028

ND

Thiobencarb

ppb

ND

NR due 2028

1.6 due 2028

3.4 due 2028

42

Runoff/leaching from rice herbicide

Total Dissolved Solids (TDS) (m)	ppm	573 - 690/632	230	NR	NR	1.6	3.4	1,000	NA	(2)	Runoff/leaching from natural deposits; seawater influence
Γurbidity (a)	NTU	ND	0.044	NR due 2028	NR due 2028	due 2028 1.6 due 2028	due 2028 3.4 due 2028	5	NA	0.1	Soil runoff
Zinc	ppm	ND	ND	NR due 2028	NR due 2028	1.6 due 2028	3.4 due 2028	5.0	NA	0.05	Runoff/leaching from natural deposits; industrial wastes
				ude 2020	duc 2020	duc 2020	duc 2020				
OTHER PARAMETERS General Minerals											
Alkalinity (as CaCO3)	ppm	109 - 127/118	78	NR due 2028	NR due 2028	1.6 due 2028	3.4 due 2028	NA	NA	(1)	Measure of water quality
Calcium	ppm	59 - 76/68	22	NR due 2028	NR due 2028	1.6 due 2028	3.4 due 2028	NA	NA	(0.1)	Measure of water quality
Hardness (as CaCO ₃)	ppm	241 - 303/272	99	NR due 2028	NR due 2028	1.6 due 2028	3.4 due 2028	NA	NA	(1)	Measure of water quality
Magnesium	ppm	25 - 29/26	11	NR due 2028	NR	1.6 due 2028	3.4	NA	NA	(0.01)	Measure of water quality
Potassium	ppm	4.6 - 5.4/5.0	2.4	NR	due 2028 NR	1.6	due 2028 3.4	NA	NA	(0.2)	Measure of water quality
Sodium	ppm	93 - 117/105	46	due 2028 NR	due 2028 NR	due 2028 1.6	due 2028 3.4	NA	NA	(1)	Measure of water quality
Unregulated Contaminants				due 2028	due 2028	due 2028	due 2028	<u> </u>			
Boron	ppb	140	140	NR	NR	NR	NR	NL=1,000	NA	100	Runoff/leaching from natural deposits; industrial wastes
Chlorate	ppb	80	56	NR	NR	NR	NR	NL=800	NA	(10)	By-product of drinking water chlorination; industrial processes
ithium	ppb	32 - 47/40	NR	NR	NR	NR	NR	NA	NA	(10)	and pharmaceuticals
/anadium	ppb	ND	ND	NR	NR	NR	NR	NL=50	NA	3	Naturally occurring; industrial waste discharge
Dichlorodifluoromethane (Freon 12)	ppb	ND	ND	NR	NR	NR	NR	NL=1,000	NA	0.5	Industrial waste discharge
Ethyl- <i>tert</i> -butyl-ether (ETBE)	ppb	ND	ND	NR	NR	NR	NR	NA	NA	3	•
		ND	ND	NR							Used as gasoline additive
tert-Amyl-methyl-ether (TAME)	ppb				NR	NR	NR	NA	NA	3	Used as gasoline additive
tert-Butyl alcohol (TBA)	ppb	ND	ND	NR	NR	NR	NR	NL=12	NA	2	MTBE breakdown product; used as gasoline additive
Nitrosamine Compounds											
I-Nitrosodimethylamine (NDMA)	ppt	ND	ND	NR	NR	NR	NR	NL=10	3	(2)	
N-Nitrosodiethylamine (NDEA)	ppt	ND	ND	NR	NR	NR	NR	NL=10	NA	(2)	
N-itrosodi-n-propylamine (NDPA)	ppt	ND	ND	NR	NR	NR	NR	NL=10	NA	(2)	1
N-Nitrosomethylethylamine (NMEA)	ppt	ND	ND	NR	NR	NR	NR	NA	NA	(2)	1
N-Nirosodi-n-butylamine (NDBA)	ppt	ND	ND	NR	NR	NR	NR	NA	NA	(2)	Byproducts of drinking water chloramination: industrial processes
N-Nitrosopyroline (NPYR)	ppt	ND	ND	NR	NR	NR	NR	NA	NA	(2)	-
N-Nitrosopipedine (NPIP)	ppt	ND	ND	NR	NR	NR	NR	NA	NA	(2)	-
N-Nitrosomorpholine (NMOR)	ppt	ND	ND	NR	NR NR	NR	NR	NA NA	NA NA	(2)	4
				nne.	MIX	MK	MIX	INA	NA	(4)	
Perfluoroalkyl and Polyfluoroalky Subs											
Perfluorocatanoic Acid (PFOA)	ppt	ND	ND	ND	ND	ND	ND - 4.7/4.0	NL=5.1	0.007	4	
Perfluoroctanesulfonic Acid (PFOS)	ppt	ND	ND	ND	ND	ND	ND - 3.4/1.68	NL=6.5	1	4	
Perfluorobutaneulfonic Acid (PFBS)	ppt	ND	ND	ND	ND	ND	,ND - 3.8/1.43	NL=500	NA	3	1
		ND	ND	ND	ND	ND	ND	NA	NA	4	_

Perfluorohexanesulfonic Acid (PFHxS)	ppt	ND	ND	ND	ND	ND	ND - 2.7/1.9	NL=1000	NA	3]
Perfluoroheptanoic Acid (PFHpA)	ppt	ND	ND	ND	ND	ND	ND - 3.1/2.08	NA	NA	2	1
Perfluorodecanoic Acid (PFDA)	ppt	ND	ND	ND	ND	ND	ND	NA	NA	3	Industrial chemical factory discharges: runoff/leaching from landfills: used in fire-
Perfluorododecanoic Acid (PFDoA)	ppt	ND	ND	ND	ND	ND	ND	NA	NA	5	retarding foams and various industrial processes
Perfluorohexanoic Acid (PFHxA)	ppt	ND	ND	ND	ND	ND	3.2 - 5.7/4.65	NA	NA	2	1
Perfluoroundecanoic Acid (PFUnA)	ppt	ND	ND	ND	ND	ND	ND	NA	NA	5	1
4,8-dioxa-3H-perfluorononanoate (ADONA)	ppt	ND	ND	ND	ND	ND	ND	NA	NA	3	1
F-53B Major (11-Cl-PF3OUdS)	ppt	ND	ND	ND	ND	ND	ND	NA	NA	5	1
F-53B Minor (9CI-PF3ONS)	ppt	ND	ND	ND	ND	ND	ND	NA	NA	2	1
GenX (HFPO-DA)	ppt	ND	ND	ND	ND	ND	ND	NA	NA	5	1
De fluere alled and Dolyfluorealky Subst	TOO DEAC	Sachward by EDA Motho	do 522 Only (4)								
Perfluoroalkyl and Polyfluoroalky Substa- 4-2 Fluorotelomer sulfonic acid (42. FTS)	ppt	ND ND	ND	ND	ND	ND	ND	NA	NA	3	
4-2 Idolotolomoi banomo adia (12. 1 10)	MA.	145	112	n.	1,2	,,,,	,,,,	147.	147.1	Ū	
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	ppt	ND	ND	ND	ND	ND	ND	NA	NA	5	1
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	ppt	ND	ND	ND	ND	ND	ND	NA	NA	5	1
Perfluoro 3-methoxypropanoic acid (PFMPA)	ppt	ND	ND	ND	ND	ND	ND	NA	NA	4	1
Perfluoro-4-methoxybutanoic acid (PFMBA)	ppt	ND	ND	ND	ND	ND	ND	NA	NA	3	-
Perfluorobutanoic acid (PFBA)	ppt	ND	ND	ND	ND	ND	ND-3.5/2.4	NA	NA	5	-
Perfluoroheptanesulfonic acid (PFHpS)	ppt	ND	ND	ND	ND	ND	ND	NA	NA	3	-
	PP.				,,,,	,,,,	,,,5	10.1	10.1		
Perfluoropentanesulfonic acid (PFPeS)	ppt	ND	ND	ND	ND	ND	ND	NA	NA	4	Industrial chemical factory discharges, runoff/leaching from landfills: used in fire- retarding foams and various industrial processes
Perfluoropenetanoic acid (PFPeA)	ppt	ND	ND	ND	ND	ND	ND - 5.5/3.7	NA	NA	3]
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ppt	ND	ND	ND	ND	ND	8	NA	NA	20	
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ppt	ND	ND	ND	ND	ND	ND	NA	NA	3	-
Perfluoroalkyl and Polyfluoroalky Subst	ances DEAS A	halvzed by EDA Metho	de 537 1 Only (t)]	1				
Perfluorotetradecanoic acid (PFTA)	ppt	ND	ND	ND	ND	ND	ND	NA	NA	8	1
Perfluorotridecanoic acid (PFTrDA)	ppt	ND	ND	ND	ND	ND	ND	NA	NA	7	-
N-ethyl Perfluorooctanesulfonamidoacetic acid	ppt	ND	ND	ND	ND	ND	ND	NA	NA	5	-
(NEtFOSAA) N-methyl Perfluorooctanesfulfonamidoacetic	ppt	ND	ND	ND	ND	ND	ND	NA	NA	6	-
acid (NMeFOSAA)	PP-	2	2			712	2				
Miscellaneous (n)											
Calcium Carbonate Precipitation Potential (CCPP) (as CaCO3) (p)	ppm	5.5 - 11/8.4	NR	NR	NR	NR	NR	NA	NA	NA	
Corrosivity (q)	Al	12.4 - 12.6/12.5	12.3	NR	NR	NR	NR	NA	NA	NA	Measures of the balance between pH and calcium carbonate saturation in the
(as Aggressiveness Index)	CI	0.00 0.000						N.			water
Corrosivity (r) (as Saturation Index)	SI	0.60 - 0.65/0.62	0.44	NR	NR	NR	NR	NA	NA	NA	
pН	pH units	8.2	7.9 - 8.6/8.25	NR	NR	NR	NR	NA	NA	NA	Not applicable

Radon
Total Dissolved Solids (TDS) (s)

	Í						ĺ			<u>''</u>
pCi/L	ND	NR	NR	NR	NR	NR	NA	NA	100	Gas produced by the decay of naturally occurring uranium in soil and water
										,
ppm	506 - 680/587	230 - 270/250	NR	NR	NR	NR	1,000	NA	NA	Runoff/leaching from natural deposits

DEFINITION OF TERMS AND FOOTNOTES

‡ As a wholesale water system, Metropolitan and Three Valleys MWD provides its member agencies with relevant source water information and monitoring results that they may need for their annual water quality report. Compliance with state or federal regulations is determined at the treatment plant effluent locations and/or distribution system, or plant influent per frequency stipulated in Metropolitan and Three Valleys MWD's State-approved monitoring plans, and is based on TT, RAA, or LRAA, as appropriate. Data above Metropolitan's laboratory reporting limit (RL) but below the State DLR are reported as ND in this report; these data are available upon request. Metropolitan and Three Valleys MWD were in compliance with all primary and secondary drinking water regulations for the current monitoring period.

Note: Metropolitan and Three Valleys MWD monitors the distribution system for constituents under the revised Total Coliform Rule (RTCR), Water Fluoridation Standards, and Disinfectants/Disinfection Byproduct Rule (TTHMs, HAA5, and total chlorine residual), including NDMA. Constituents with grayed out areas in the distribution system column are routinely monitored at treatment plant effluents and not in the distribution system.

Definition of Terms	1			
Al	Aggressiveness Index		NL	Notification Level to SWRCB
AL	Action Level		NR	Not required
Average	Result based on arithmetic mean		NTU	Nephelometric Turbidity Units
CaCO ₃	Calcium Carbonate		pCi/L	picoCuries per Liter
CCPP	Calcium Carbonate Precipitation Potential		PHG	Public Health Goal
CFE	Combined Filter Effluent		ppb	parts per billion or micrograms per liter (μg/L)
CFU	Colony-Forming Units		ppm	parts per million or milligrams per liter (mg/L)
DLR	Detection Limits for Purposes of Reporting		ppq	parts per quadrillion or picograms per liter (pg/L)
HAA5	Sum of five haloacetic acids		RAA	Running Annual Average; highest RAA is the highest of all Running Annual Averages calculated as an
HPC	Heterotrophic Plate Count			average of all the samples collected within a 12-month period
LRAA			Range	Results based on minimum and maximum values; range and average values are the same if a single
				value is reported for samples collected once or twice annually
MCL	Maximum Contaminant Level		RL	Reporting Limit
MCLG	Maximum Contaminant Level Goal		SI	Saturation Index (Langelier)
MFL	Million Fibers per Liter		TDS	Total Dissolved Solids
MRDL	Maximum Residual Disinfectant Level		TON	Threshold Odor Number
MRDLG	Maximum Residual Disinfectant Level Goal		TT	Treatment Technique is a required process intended to reduce the level of a contaminate in drinking water
NA	Not Applicable		TTHM	Total Trihalomethanes
ND	Not Detected at or above DLR or RL		UCMR5	Fifth Unregulated Contaminant Monitoring Rule
		•		

- **Footnotes**
 - (a) Metropolitan and Three Valleys MWD monitors turbidity at the CFE locations using continuous and grab samples. Turbidity, a measure of cloudiness of the water, is an indicator of treatment performance. Turbidity was in compliance with the TT primary drinking water standard and the secondary drinking water standard of less than 5 NTU.
 - (b) Per the State's Surface Water Treatment Rule, treatment techniques that remove or inactivate Giardia cysts will also remove HPC bacteria, Legionella, and viruses. Legionella and virus monitoring is not required.
 - (c) Compliance is based on monthly samples from treatment plant effluents and the distribution system. No.Level 1 assessments occurred and no. E. coli was detected.
 - (d) MWD and TVMWD analyze HPC bacteria in the plant effluent to monitor treatment process efficacy.
 - (e) MWD data are from samples collected in 2024 and reported once every three-year compliance cycle until the next required monitoring in 2027. TVMWD data are from samples collected in 2024.
 - (f) MWD uses acrylamide for water treatment processes and was in compliance with the treatment technique requirements regarding its use when treating drinking water. MWD does not use any epichlorohydrin's. TVMWD does not use acrylamide or epichlorohydrin's for water treatment processes.
 - (q) Compliance with the State MCL for aluminumis based on RAA.
 - (h) MWD data reported for 2020 for the required nine-year monitoring cycle (2020-2028). TVMWD data reported for 2024 and is conducted annually.
 - (i) As a wholesaler, Metropolitan and Three Valleys MWD have no retail customers and are not required to collect samples at consumers' taps. However, compliance monitoring under Title 22 is required at plant effluents.
 - (j) Metropolitan was in compliance with all provisions of the State's fluoridation system requirements. TVMWD does not have fluoride feed systems and all fluoride results are naturally occurring.
 - (k) Compliance with the state and federal MCLs is based on RAA or LRAA, as appropriate. Plant core locations for TTHM and HAA5 are service connections specific to each of the treatment plant effluents.
 - (I) Compliance with the state and federal bromate MCL is based on RAA.
 - (m) Metropolitan's TDS compliance data are based on flow-weighted monthly composite samples collected twice per year (April and October). The 12-month statistical summary of flow-weighted data is reported in "Other Parameters'. TVMWD is required to test once annually for TDS.
 - (n) Data are from voluntary monitoring of constituents and are provided for informational purposes.
 - (o) Compliance with odor threshold secondary MCL is based on RAA. Treatment Plant begin quarterly monitoring if annual monitoring results are above 3.

- (p) Positive CCPP = non-corrosive; tendency to precipitate and/or deposit scale on pipes. Negative CCPP = corrosive; tendency to dissolve calcium carbonate. Reference: Standard Methods (SM2330)
- (q) Al ≥ 12.0 = Non-aggressive water; Al 10.0–11.9 = Moderately aggressive water; Al ≤ 10.0 = Highly aggressive water. Reference: ANSI/AWWA Standard C400-93 (R98)
- (r) Positive SI = non-corrosive; tendency to precipitate and/or deposit scale on pipes. Negative SI = corrosive; tendency to dissolve calcium carbonate. Reference: Standard Methods (SM2330)
- (s) Statistical summary represents 12 months of flow-weighted data and values may be different than the TDS reported to meet compliance with secondary drinking water regulations for Metropolitan.
- (t) HAA5 and TTHM noncompliance samples were collected at the treatment plant effluents.
- (u) Data are the average of the results from the two analytical methods.

	l		